Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.964
Filtrar
1.
Ecotoxicol Environ Saf ; 275: 116286, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564864

RESUMO

Pneumoconiosis is one of the most serious occupational diseases worldwide. Silicosis due to prolonged inhalation of free silica dust during occupational activities is one of the main types. Cuproptosis is a newly discovered mode of programmed cell death characterized by the accumulation of free copper in the cell, which ultimately leads to cell death. Increased copper in the serum of silicosis patients, suggests that the development of silicosis is accompanied by changes in copper metabolism, but whether cuproptosis is involved in the progression of silicosis is actually to be determined. To test this hypothesis, we screened the genetic changes in patients with idiopathic fibrosis by bioinformatics methods and predicted and functionally annotated the cuproptosis-related genes among them. Subsequently, we established a mouse silicosis model and detected the concentration of copper ions and the activity of ceruloplasmin (CP) in serum, as well as changes of the concentration of copper and cuproptosis related genes in mouse lung tissues. We identified 9 cuproptosis-related genes among the differential genes in patients with IPF at different times and the tissue-specific expression levels of ferredoxin 1 (FDX1) and Lipoyl synthase (LIAS) proteins. Furthermore, serum CP activity and copper ion levels in silicosis mice were elevated on days 7th and 56th after silica exposure. The expression of CP in mouse lung tissue elevated at all stages after silica exposure. The mRNA level of FDX1 decreased on days 7th and 56th, and the protein level remained in accordance with the mRNA level on day 56th. LIAS and Dihydrolipoamide dehydrogenase (DLD) levels were downregulated at all times after silica exposure. In addition, Heatshockprotein70 (HSP70) expression was increased on day 56. In brief, our results demonstrate that there may be cellular cuproptosis during the development of experimental silicosis in mice and show synchronization with enhanced copper loading in mice.


Assuntos
Cobre , Silicose , Humanos , Animais , Camundongos , Cobre/toxicidade , Silicose/genética , Apoptose , Biologia Computacional , Modelos Animais de Doenças , RNA Mensageiro , Dióxido de Silício/toxicidade
2.
Bull Environ Contam Toxicol ; 112(4): 52, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565801

RESUMO

The increasing use of copper oxide nano particles (nCuO) as nano-fertilizers and pesticides have raised concerns over their impact on soil environment and agricultural products. In this study, two nCuO with different shapes, namely spherical nCuO (CuO NPs) and tubular nCuO (CuO NTs), were selected to investigate their bioavailability and toxicity to pakchoi in two soils with different properties. At the meantime, CuO bulk particles (CuO BPs) and Cu(NO3)2 were used for comparison. Results showed that all the Cu treatments increased the DTPA extractable (DTPA-Cu) concentrations in GD soil (acidic) more than in HN soil (alkaline). The DTPA-Cu concentrations increased in the order of Cu(NO3)2 ≈ CuO NPs > CuO BPs ≈ CuO NTs in GD soil and Cu(NO3)2 > CuO NPs > CuO BPs ≈ CuO NTs in HN soil. While for the contents of Cu in the aerial parts of pakchoi, the order is CuO NPs > Cu(NO3)2 > CuO NTs ≈ CuO BPs in GD soil and CuO NPs ≈ Cu(NO3)2 > CuO BPs ≈ CuO NTs in HN soil. Only CuO NPs reduced pakchoi biomass in GD soil. There are no significant difference among CuO NPs, CuO BPs, and Cu(NO3)2 in reducing the chlorophyll contents in pakchoi in HN soil, whereas in GD soil, CuO NPs and CuO BPs led to significantly lower chlorophyll contents in pakchoi compared to Cu(NO3)2. Additionally, CuO NPs and Cu(NO3)2 increased Mn and Mo in pakchoi leaf in HN soil, while increased Zn in pakchoi leaf in GD soil. These results indicated that CuO NPs showed higher or comparable toxicity and bioavailability to pakchoi compared with Cu(NO3)2 depending on soil properties, and nCuO are more easily to be transferred from roots to the aerial parts than CuO BPs and Cu(NO3)2.


Assuntos
Brassica , Nanopartículas Metálicas , Nanopartículas , Cobre/toxicidade , Disponibilidade Biológica , Solo , Óxidos , Clorofila , Ácido Pentético , Nanopartículas Metálicas/toxicidade
3.
Sci Rep ; 14(1): 8608, 2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615032

RESUMO

This study investigated the influence of cadmium (Cd) and copper (Cu) heavy metals on germination, metabolism, and growth of zucchini seedlings (Cucurbita pepo L.). Zucchini seeds were subjected to two concentrations (100 and 200 µM) of CdCl2 and CuCl2. Germination parameters, biochemical and phytochemical attributes of embryonic axes were assessed. Results revealed that germination rate remained unaffected by heavy metals (Cd, Cu). However, seed vigor index (SVI) notably decreased under Cd and Cu exposure. Embryonic axis length and dry weight exhibited significant reductions, with variations depending on the type of metal used. Malondialdehyde and H2O2 content, as well as catalase activity, did not show a significant increase at the tested Cd and Cu concentrations. Superoxide dismutase activity decreased in embryonic axis tissues. Glutathione S-transferase activity significantly rose with 200 µM CdCl2, while glutathione content declined with increasing Cd and Cu concentrations. Total phenol content and antioxidant activity increased at 200 µM CuCl2. In conclusion, Cd and Cu heavy metals impede zucchini seed germination efficiency and trigger metabolic shifts in embryonic tissue cells. Response to metal stress is metal-specific and concentration-dependent. These findings contribute to understanding the intricate interactions between heavy metals and plant physiology, aiding strategies for mitigating their detrimental effects on plants.


Assuntos
Cádmio , Cucurbita , Cádmio/toxicidade , Cobre/toxicidade , Peróxido de Hidrogênio , Estresse Oxidativo , Sementes
4.
Sci Total Environ ; 927: 172289, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599405

RESUMO

Cu, as an essential and toxic element, has gained widespread attention. Both salinity and dissolved organic carbon (DOC) are known to influence Cu toxicity in marine organisms. However, the intricate interplay between these factors and their specific influence on Cu toxicity remains ambiguous. So, this study conducted toxicity tests of Cu on Oryzias melastigma. The experiments involved three salinity levels (10, 20, and 30 ppt) and three DOC levels (0, 1, and 5 mg/L) to comprehensively investigate the underlying mechanisms of toxicity. The complex toxic effects were analyzed by mortality, NKA activity, net Na+ flux and Cu bioaccumulation in O. melastigma. The results indicate that Cu toxicity is notably influenced by both DOC and salinity. Interestingly, the discernible variation in Cu toxicity across different DOC levels diminishes as salinity levels increase. The presence of DOC enhances the impact of salinity on Cu toxicity, especially at higher Cu concentrations. Additionally, Visual MINTEQ was utilized to elucidate the chemical composition of Cu, revealing that DOC had a significant impact on Cu forms. Furthermore, we observed that fluctuations in salinity lead to the inhibition of Na+/K+-ATPase (NKA) activity, subsequently hindering the inflow of Na+. The effects of salinity and DOC on the bioaccumulation of copper were not significant. The influence of salinity on Cu toxicity is mainly through its effect on the osmotic regulation and biophysiology of O. melastigma. Additionally, DOC plays a crucial role in the different forms of Cu. Moreover, DOC-Cu complexes can be utilized by organisms. This study contributes to understanding the mechanism of copper's biological toxicity in intricate marine environments and serves as a valuable reference for developing marine water quality criteria for Cu.


Assuntos
Carbono , Cobre , Oryzias , Salinidade , Poluentes Químicos da Água , Cobre/toxicidade , Cobre/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Carbono/metabolismo , Oryzias/metabolismo , Oryzias/fisiologia , Bioacumulação
5.
Sci Total Environ ; 927: 172145, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569974

RESUMO

Copper (Cu) has sparked widespread global concern as one of the most hazardous metals to aquatic animals. Ocean acidification (OA) and warming (OW) are expected to alter copper's bioavailability based on pH and temperature-sensitive effects; research on their effects on copper on marine organisms is still in its infancy. Therefore, under representative concentration pathways (RCP) 2.6, 4.5, and 8.5, we used the multiple linear regression-water quality criteria (MLR-WQC) method to assess the effects of OA and OW on the ecological risk posed by copper in the Ocean of East China (OEC), which includes the Bohai Sea, Yellow Sea, and East China Sea. The results showed that there was a positive correlation between temperature and copper toxicity, while there was a negative correlation between pH and copper toxicity. The short-term water quality criteria (WQC) values were 1.53, 1.41, 1.30 and 1.13 µg·L-1, while the long-term WQC values were 0.58, 0.48, 0.40 and 0.29 µg·L-1 for 2020, 2099-RCP2.6, 2099-RCP4.5 and 2099-RCP8.5, respectively. Cu in the OEC poses a moderate ecological risk. Under the current copper exposure situation, strict intervention (RCP2.6) only increases the ecological risk of copper exposure by 20 %, and no intervention (RCP8.5) will increase the ecological risk of copper exposure by nearly double. The results indicate that intervention on carbon emissions can slow down the rate at which OA and OW worsen the damage copper poses to marine creatures. This study can provide valuable information for a comprehensive understanding of the combined impacts of climate change and copper on marine organisms.


Assuntos
Organismos Aquáticos , Cobre , Monitoramento Ambiental , Oceanos e Mares , Água do Mar , Poluentes Químicos da Água , Cobre/toxicidade , Água do Mar/química , Organismos Aquáticos/efeitos dos fármacos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Concentração de Íons de Hidrogênio , China , Mudança Climática , Aquecimento Global , Animais , Acidificação dos Oceanos
6.
Ying Yong Sheng Tai Xue Bao ; 35(3): 721-730, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646760

RESUMO

Metal nanoparticles could be accumulated in soils, which threatens the ecological stability of crops. Investigating the effects of cuprous oxide nanoparticles (Cu2O-NPs) on photosystem Ⅱ (PSⅡ) of wheat seedling leaves holds considerable importance in comprehending the implications of Cu2O-NPs on crop photosynthesis. Following the hydroponic method, we investigated the effects of 0, 10, 50, 100, and 200 mg·L-1 Cu2O-NPs on chlorophyll fluorescence induction kinetics and photosynthetic-related genes in wheat seedlings of "Zhoumai 18". The results showed that, with the increases of Cu2O-NPs concentrations, chlorophyll contents in wheat leaves decreased, and the standardization of the OJIP curve showed a clearly K-phase (ΔK>0). Cu2O-NPs stress increased the parameters of active PSⅡ reaction centers, including the absorption flux per active RC (ABS/RC), the trapping flux per active RC (TRo/RC), the electron transport flux per active RC (ETo/RC), and the dissipation flux per active RC (DIo/RC). Cu2O-NPs stress decreased the parameters of PSⅡ energy distribution ratio including the maximum quantum yield of PSⅡ (φPo), the quantum yield of electron transport from QA (φEo), and the probability that a trapped exciton moved an electron further than QA (Ψo), while increased the quantum ratio for heat dissipation (φDo). Moreover, there was a decrease in photosynthetic quantum yield Y(Ⅱ), photochemical quenching coefficient (qP), net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr) of leaves with the increases of Cu2O-NPs concentration. Under Cu2O-NPs stress, the expression levels of genes which included PSⅡ genes (PsbD, PsbP, Lhcb1), Rubisco large subunit genes (RbcL), cytochrome b6/f complex genes (PetD, Rieske), and ATP synthase genes (AtpA, AtpB, AtpE, AtpI) were downregulated. These results indicated that Cu2O-NPs stress altered the activity and structure of PSⅡ in wheat seedlings, affected the activity of PSⅡ reaction centers, performance parameters of PSⅡ donor and acceptor sides. PSⅡ related genes were downregulated and exhibited significant concentration effects.


Assuntos
Clorofila , Cobre , Nanopartículas Metálicas , Fotossíntese , Complexo de Proteína do Fotossistema II , Plântula , Triticum , Triticum/metabolismo , Triticum/genética , Cobre/toxicidade , Clorofila/metabolismo , Plântula/metabolismo , Plântula/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/efeitos dos fármacos , Fluorescência , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Cinética
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166928, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38660915

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder with clinical presentations of moderate to severe cognitive, motor, and psychiatric disturbances. HD is caused by the trinucleotide repeat expansion of CAG of the huntingtin (HTT) gene. The mutant HTT protein containing pathological polyglutamine (polyQ) extension is prone to misfolding and aggregation in the brain. It has previously been observed that copper and iron concentrations are increased in the striata of post-mortem human HD brains. Although it has been shown that the accumulation of mutant HTT protein can interact with copper, the underlying HD progressive phenotypes due to copper overload remains elusive. Here, in a Drosophila model of HD, we showed that copper induces dose-dependent aggregational toxicity and enhancement of Htt-induced neurodegeneration. Specifically, we found that copper increases mutant Htt aggregation, enhances the accumulation of Thioflavin S positive ß-amyloid structures within Htt aggregates, and consequently alters autophagy in the brain. Administration of copper chelator D-penicillamine (DPA) through feeding significantly decreases ß-amyloid aggregates in the HD pathological model. These findings reveal a direct role of copper in potentiating mutant Htt protein-induced aggregational toxicity, and further indicate the potential impact of environmental copper exposure in the disease onset and progression of HD.


Assuntos
Cobre , Modelos Animais de Doenças , Proteína Huntingtina , Doença de Huntington , Animais , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Cobre/metabolismo , Cobre/toxicidade , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Humanos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Mutação , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética
8.
Bull Environ Contam Toxicol ; 112(3): 45, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429565

RESUMO

Crayfish rely on their chemosensory system for many essential behaviours including finding food, finding mates, and to recognize individuals. Copper can impair chemosensation in crayfish at low concentrations; however, it is not clear if the effect is ameliorated once copper is removed. To better understand the effect of and recovery from copper exposure in crayfish, we exposed Northern clearwater crayfish (Faxonius propinquus) to 31.3 [Formula: see text] copper for 24 h and measured the response of the crayfish to a food cue. The crayfish were then placed into clean water to depurate for an 24 h. The results demonstrated that the crayfish did not respond to a food cue if they had been exposed to copper, but showed a full response after a 24 h recovery period without copper. Higher concentrations of copper have shown a much longer-term effect in rusty crayfish (Faxonius rustics), indicating there is a concentration where the copper is causing longer-term damage instead of just impairing chemosensation. These results highlight the fact that even though contaminants like copper can have profound effects at low concentrations, by removing the contaminants the effect can be ameliorated.


Assuntos
Cobre , Poluentes Químicos da Água , Humanos , Animais , Cobre/toxicidade , Astacoidea/fisiologia , Alimentos Marinhos , Poluentes Químicos da Água/toxicidade , Água
9.
Sci Total Environ ; 925: 171812, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508267

RESUMO

Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.


Assuntos
Inoculantes Agrícolas , Microalgas , Salvia miltiorrhiza , Rizosfera , Antioxidantes/metabolismo , Salvia miltiorrhiza/metabolismo , Carvão Vegetal/metabolismo , Solo , Cobre/toxicidade , Cobre/metabolismo
10.
Arh Hig Rada Toksikol ; 75(1): 51-60, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548382

RESUMO

This study aimed to assess the redox status and trace metal levels in 49 shoe industry workers (11 men and 38 women) occupationally exposed to a mixture of volatile organic compounds (VOCs), which includes aliphatic hydrocarbons, aromatic hydrocarbons, ketones, esters, ethers, and carboxylic acids. All measured VOCs were below the permitted occupational exposure limits. The control group included 50 unexposed participants (25 men and 25 women). The following plasma parameters were analysed: superoxide anion (O2 •-), advanced oxidation protein products (AOPP), total oxidative status (TOS), prooxidant-antioxidant balance (PAB), oxidative stress index (OSI), superoxide dismutase (SOD) and paraoxonase-1 (PON1) enzyme activity, total SH group content (SHG), and total antioxidant status (TAS). Trace metal levels (copper, zinc, iron, magnesium, and manganese) were analysed in whole blood. All oxidative stress and antioxidative defence parameters were higher in the exposed workers than controls, except for PON1 activity. Higher Fe, Mg, and Zn, and lower Cu were observed in the exposed vs control men, while the exposed women had higher Fe and lower Mg, Zn, and Cu than their controls. Our findings confirm that combined exposure to a mixture of VOCs, even at permitted levels, may result in additive or synergistic adverse health effects and related disorders. This raises concern about current risk assessments, which mainly rely on the effects of individual chemicals, and calls for risk assessment approaches that can explain combined exposure to multiple chemicals.


Assuntos
Oligoelementos , Compostos Orgânicos Voláteis , Masculino , Humanos , Feminino , Antioxidantes/farmacologia , Cobre/toxicidade , Compostos Orgânicos Voláteis/toxicidade , Sapatos , Estresse Oxidativo , Oxirredução , Arildialquilfosfatase/metabolismo , Arildialquilfosfatase/farmacologia
11.
Sci Total Environ ; 924: 171700, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490408

RESUMO

The speciation, bioaccumulation, and toxicity of the newly deposited atmospheric heavy metals in the soil-earthworm (Eisenia fetida) system were investigated by a fully factorial atmospheric exposure experiment using soils exposed to 0.8-year and 1.8-year atmospheric depositions. The results shown that the newly deposited metals (Cu, Cd, and Pb) primarily accumulated in the topsoil (0-6 cm) and were present as the highly bioavailable speciation. They can migrate further to increase the concentrations of Cu, Cd, and Pb in soil solution of the deeper layer (at 10 cm) by 12 %-436 %. Earthworms tended to preferentially accumulate the newly deposited metals, which contributed 10 %-61 % of Cu, Cd, and Pb in earthworms. Further, for the unpolluted and moderately polluted soils, the newly deposited metals induced the significant oxidative stress in earthworms, resulting in significant increases in antioxidant enzyme activities (SOD, CAT, and GSH-Px). No significant differences were observed in the levels of heavy metals in soil solutions, bioaccumulation, and enzyme activities in earthworms exposed to 0.8-year and 1.8-year depositions, indicating the bioavailability of atmospheric metals deposited into soils was rapidly decreased with time. This study highlights the high bioaccumulation and toxicity of heavy metals to earthworm from the new atmospheric deposition during the earthworm growing period.


Assuntos
Metais Pesados , Oligoquetos , Poluentes do Solo , Animais , Cobre/toxicidade , Cobre/análise , Cádmio , Solo , Bioacumulação , Chumbo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise
12.
Toxicol In Vitro ; 97: 105805, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458500

RESUMO

Metals are used in 3-dimensional (3D) printer filaments in the manufacture of 3D printed objects. Exposure to the filaments, printed objects and emissions from printing may pose health risks from release of toxic metals. This study investigated the cytotoxicity of extruded 3D printer filament leachates in rat and human intestinal cells. Copper-, bronze-, and steel-fill extruded filaments were incubated in acidic media for 2 h. Leachates were adjusted to pH 7 and cells exposed for 4 or 24 h. Concentration- and time-dependent decreases in rat and human cell viability were observed using a colorimetric assay and confirmed by microscopy. Copper- and bronze-fill leachates were more cytotoxic than steel. Copper-fill leachates had the highest copper concentrations by ICP-MS. Exposure to CuSO4 resulted in concentration-dependent cytotoxicity in rat cells. The copper chelator bathocuproine disulphonate alleviated cytotoxicity of CuSO4 and copper-fill leachate, suggesting that copper ions have a role in the cytotoxicity. Hydrogen peroxide increased and glutathione decreased in rat cells exposed to copper-fill leachate, suggesting the formation of reactive oxygen species. Overall, our data indicate that metals released from the acidic exposure of print objects using metal-fill filaments, especially copper, are toxic to rat and human intestinal cells and additional studies are needed.


Assuntos
Cobre , Metais , Humanos , Ratos , Animais , Cobre/toxicidade , Intestinos , Aço
13.
Environ Pollut ; 348: 123847, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552771

RESUMO

Copper pollution has become global environmental concern. Widespread Cu pollution results in excessive Cu exposure in human. Epidemiological studies and animal experiments revealed that Cu exposure might have reproductive toxicity. Cuproptosis is a newly reported Cu-dependent and programmed cell death formTsvetkov et al., 2022. However, whether copper exposure at real environmental exposure dose might cause placental cuproptosis and induce miscarriage was completely unexplored. In this study, we found that Cu exposure during pregnancy induced miscarriage or complete pregnancy loss by inducing placenta cuproptosis in CuCl2-exposed pregnant mice. Notably, Cu exposure at 1.3 mg/kg/d (a real environmental exposure dose) was enough to cause placenta cuproptosis. CuCl2 exposure disrupts the TCA cycle, causes proteotoxic stress, increases Cu2+ ion import/decreases Cu2+ export, and results in the loss of Fe-S cluster proteins in mouse placenta, which induces placenta cuproptosis. Moreover, we also identified that Cu exposure down-regulates the expression levels of mmu-miR-3473b, which interacts with Dlst or Rtel1 mRNA and simultaneously positively regulates Dlst or Rtel1 expression, thereby disrupting the TCA cycle and resulting in the loss of Fe-S cluster proteins, and thus epigenetically regulates placental cuproptosis. Treatment with TTM (a cuproptosis inhibitor) suppressed placental cuproptosis and alleviated miscarriage in CuCl2-exposed mice. This work provides novel reproductive toxicity of Cu exposure in miscarriage or complete pregnancy loss by causing placental cuproptosis. This study also provides new ways for further studies on other toxicological effects of Cu and proposes a new approach for protection against Cu-induced reproductive diseases.


Assuntos
Aborto Espontâneo , Gravidez , Humanos , Feminino , Animais , Camundongos , Aborto Espontâneo/induzido quimicamente , Cobre/toxicidade , Placenta , Exposição Ambiental , Poluição Ambiental , Apoptose
14.
Ecotoxicology ; 33(3): 266-280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436777

RESUMO

With the rapid development of industrialization and urbanization, the issue of copper (Cu) and cadmium (Cd) pollution in aquatic ecosystems has become increasingly severe, posing threats to the ovarian tissue and reproductive capacity of aquatic organisms. However, the combined effects of Cu and Cd on the ovarian development of fish and other aquatic species remain unclear. In this study, female Nile tilapia (Oreochromis niloticus) were individually or co-exposed to Cu and/or Cd in water. Ovarian and serum samples were collected at 15, 30, 60, 90, and 120 days, and the bioaccumulation, ovarian development, and hormone secretion were analyzed. Results showed that both single and combined exposure significantly reduced the gonadosomatic index and serum hormone levels, upregulated estrogen receptor (er) and progesterone receptor (pr) gene transcription levels, and markedly affected ovarian metabolite levels. Combined exposure led to more adverse effects than single exposure. The data demonstrate that the Cu and Cd exposure can impair ovarian function and structure, with more pronounced adverse effects under Cu and Cd co-exposure. The Cu and Cd affect the metabolic pathways of nucleotides and amino acids, leading to ovarian damage. This study highlights the importance of considering combined toxicant exposure in aquatic toxicology research and provides insights into the potential mechanisms underlying heavy metal-induced reproductive toxicity in fish.


Assuntos
Ciclídeos , Poluentes Químicos da Água , Animais , Feminino , Cobre/toxicidade , Cobre/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Ecossistema , Hormônios/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
15.
J Hazard Mater ; 469: 133993, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461661

RESUMO

The presence of organic-complexed copper and zinc in anaerobic digestate effluent (ADE) poses persistent ecological toxicity. This study investigated the detoxification performance and biotic responses of indigenous bacteria against ethylene diamine tetraacetic acid (EDTA)-complexed Cu(II) and Zn(II). Heavy metals (HMs) stress induced reactive oxygen species (ROS) generation and enhanced extracellular polymeric substances (EPS) secretion. At a Cu(II) influent concentration of 20.0 mg·L-1, indigenous bacteria removed 88.2% of Cu(II) within nine days. The majority of copper and zinc sequestered by bacteria were stored in the cell envelope, with over 50% of copper and 60% of zinc being immobilized. Transmission electron microscopy mapping (TEM-mapping) revealed significant mineralization of copper and zinc on the cell wall. Proteins abundant in EPS, alongside humic acid-like substances, effectively adsorbed HMs. Indigenous bacteria exhibited the capacity to reduce cupric to the cuprous state and cupric is preferentially reduced to cuprous before reaching reducing capacity saturation. Sulfur precipitation emerges as a crucial pathway for Zn(II) removal. Metagenomic analysis indicated that indigenous bacteria upregulated genes related to HMs homeostasis, efflux, and DNA repair, enhancing its resistance to high concentrations HMs. This study provided theoretical guidance for employing bacterial consortia to eliminate HMs in complex aquatic environments.


Assuntos
Cobre , Metais Pesados , Cobre/toxicidade , Cobre/metabolismo , Zinco/toxicidade , Zinco/metabolismo , Anaerobiose , Metais Pesados/metabolismo , Bactérias/genética , Bactérias/metabolismo , Compostos Orgânicos/metabolismo
16.
Environ Pollut ; 347: 123680, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467363

RESUMO

Freshwater ecosystems are affected by various stressors, such as contamination and exotic species, making them amongst the most imperilled biological systems on the planet. In Australia and elsewhere, copper is one of the most common metal contaminants in freshwater systems and the European carp (Cyprinus carpio L.) is one of the most pervasive and widespread invasive fish species. Copper (Cu) and carp can both directly affect primary production and decomposition, which are critical and interrelated nutrient cycling processes and ecosystem services. The aim of this study was to explore the direct and indirect effects of Cu and carp individually, and together on periphyton cover, chlorophyll a concentration, growth of the macrophyte Vallisneria spiralis L., and the decomposition of leaf litter and cotton strips in a controlled, factorial experiment in outdoor experimental ponds. In isolation, Cu reduced macrophyte growth and organic matter decomposition, while chlorophyll a concentrations and periphyton cover remained unchanged, possibly due to the Low-Cu concentrations in the overlying water. Carp addition alone had a direct negative effect on the biomass of aquatic plants outside protective cages, but also increased plant biomass inside the cages, periphyton cover and chlorophyll a concentrations. Leaf litter was more decomposed in the carp only ponds compared to controls, while there was no significant effect on cotton strip decomposition. Aquatic plants were absent in the Cu + carp ponds caused by the combined effects of Cu toxicity, carp disturbance and the increase in turbidity due to carp bioturbation. Increases in periphyton cover in Low-Cu + carp, while absence in the High-Cu + carp ponds, and differences in the decomposition of surface and buried cotton strips were not as predicted, which highlights the need for such studies to understand the complex interactions among stressors for environmental risk assessment.


Assuntos
Carpas , Ecossistema , Animais , Clorofila A , Cobre/toxicidade , Água Doce , Espécies Introduzidas
17.
J Hazard Mater ; 469: 134059, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503209

RESUMO

Heavy metal exposure is closely associated with gut microbe function and tolerance. However, intestinal microbe responses in children to different copper ion (Cu2+) concentrations have not yet been clarified. Here, in vitro cultivation systems were established for fecal microbe control and Cu2+-treated groups in healthy children. 16S rDNA high-throughput sequencing, meta-transcriptomics and metabolomics were used here to identify toxicity resistance mechanisms at microbiome levels. The results showed that Lactobacillus sp. and Lactococcus sp. exerted protective effects against Cu2+ toxicity, but these effects were limited by Cu2+ concentration. When the Cu2+ concentration was ≥ 4 mg/L, the abundance of Lactobacillus sp. and Lactococcus sp. significantly decreased, and the pathways of antioxidant activity and detoxification processes were enriched at 2 mg/L Cu2+, and beneficial metabolites accumulated. However, at high concentrations of Cu2+ (≥4 mg/L), the abundance of potential pathogen increased, and was accompanied by a downregulation of genes in metabolism and detoxification pathways, which meant that the balance of gut microbiota was disrupted and toxicity resistance decreased. From these observations, we identified some probiotics that are tolerant to heavy metal Cu2+, and warn that only when the concentration limit of Cu2+ in food is 2 mg/L, then a balanced gut microbiota can be guaranteed in children, thereby providing protection for their health.


Assuntos
Lactobacillus , Microbiota , Criança , Humanos , Lactobacillus/genética , Cobre/toxicidade , Lactococcus , Íons
18.
Plant Physiol Biochem ; 209: 108546, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518397

RESUMO

The occurrence of drought in soils, particularly in those contaminated by metals, poses a current threat to crops, as these factors can interact and induce unique stress responses. Therefore, this study mainly focused on understanding the crosstalk between drought and copper (Cu) stress in the physiology of the barley (Hordeum vulgare L.) plant. Using a bifactorial experimental design, seedlings were grown in a natural soil under the following treatments: plants continuously irrigated in uncontaminated soil for 14 days (control); plants continuously irrigated in Cu-contaminated soil (115 mg Cu kg-1) for 14 days (Cu); plants only irrigated during the initials 7 days of growth in uncontaminated soil (drought); plants co-exposed to Cu and drought (combined). After 14 days of growth, the results revealed that drought prevented Cu bioaccumulation in barley roots, which were still severely affected by the metal, both individually and in combination with the water deficit. Furthermore, individual and combined exposure to these stressors resulted in impaired photosynthetic performance in barley plants. Despite the increased activation of enzymatic and non-enzymatic antioxidant defence mechanisms, particularly in the green organs, the plants co-exposed to both stress factors still showed higher oxidative damage, severely impacting biomass production.


Assuntos
Hordeum , Poluentes do Solo , Secas , Plantas , Metais , Cobre/toxicidade , Solo , Poluentes do Solo/toxicidade
19.
Mar Pollut Bull ; 201: 116269, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531206

RESUMO

Sessile benthic organisms can be affected by global changes and local pressures, such as metal pollution, that can lead to damages at different levels of biological organization. Effects of exposure to marine heatwaves (MHWs) alone and in combination with environmentally relevant concentration of copper (Cu) were evaluated in the reef-forming tubeworm Ficopomatus enigmaticus using a multi-biomarker approach. Biomarkers of cell membrane damage, enzymatic antioxidant defences, metabolic activity, neurotoxicity, and DNA integrity were analyzed. The exposure to Cu alone did not produce any significant effect. Exposure to MHWs alone produced effects only on metabolic activity (increase of glutathione S-transferase) and energy reserves (decrease in protein content). MHWs in combination with copper was the condition that most influenced the status of cell homeostasis of exposed F. enigmaticus. The combination of MHWs plus Cu exposure induced increase of protein carbonylation and glutathione S-transferase activity, decrease in protein/carbohydrate content and carboxylesterase activity. This study on a reef-forming organism highlighted the additive effect of a climate change-related stressor to metals pollution of marine and brackish waters.


Assuntos
Cobre , Poliquetos , Animais , Cobre/toxicidade , Mudança Climática , Biomarcadores , Glutationa Transferase
20.
Environ Int ; 186: 108594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527398

RESUMO

The widespread use of copper and tetracycline as growth promoters in the breeding industry poses a potential threat to environmental health. Nevertheless, to the best of our knowledge, the potential adverse effects of copper and tetracycline on the gut microbiota remain unknown. Herein, mice were fed different concentrations of copper and/or tetracycline for 6 weeks to simulate real life-like exposure in the breeding industry. Following the exposure, antibiotic resistance genes (ARGs), potential pathogens, and other pathogenic factors were analyzed in mouse feces. The co-exposure of copper with tetracycline significantly increased the abundance of ARGs and enriched more potential pathogens in the gut of the co-treated mice. Copper and/or tetracycline exposure increased the abundance of bacteria carrying either ARGs, metal resistance genes, or virulence factors, contributing to the widespread dissemination of potentially harmful genes posing a severe risk to public health. Our study provides insights into the effects of copper and tetracycline exposure on the gut resistome and potential pathogens, and our findings can help reduce the risks associated with antibiotic resistance under the One Health framework.


Assuntos
Antibacterianos , Cobre , Microbioma Gastrointestinal , Tetraciclina , Animais , Cobre/toxicidade , Tetraciclina/farmacologia , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Fezes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...